<ruby id="2wozi"></ruby><b id="2wozi"><noscript id="2wozi"><samp id="2wozi"></samp></noscript></b>

  • <source id="2wozi"><meter id="2wozi"></meter></source>
    <tt id="2wozi"><noscript id="2wozi"></noscript></tt>

    <rp id="2wozi"><nav id="2wozi"></nav></rp>
    <rt id="2wozi"><meter id="2wozi"><button id="2wozi"></button></meter></rt>

  • <b id="2wozi"><noscript id="2wozi"></noscript></b>

    芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

    熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯合大學.jpg

    聯合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    酯功能化的雙子表面活性劑與血紅蛋白的結合——結論、致謝!

    來源:上海謂載 瀏覽 886 次 發布時間:2021-11-15

    四、結論


    在這項工作中,我們研究了 16-E2-16 與 通過使用紫外-可見光、熒光和 CD 光譜技術結合計算方法來計算 Hb。 此外, 該相互作用系統也采用表面張力法。 在 UV-vis 研究的幫助下,我們發現 16-E2-16 導致血紅素基團暴露于水性介質。 熒光光譜證實內在猝滅 16-E2-16 的滲透抑制了血紅素對 Trp 的影響 進入 Hb 的疏水腔并導致熒光強度增加。 效果還是比較明顯的 只到cmc。 Trp 熒光比 Tyr 受到的影響更大 如同步光譜所示。 表面張力結果 確定 16-E2-16 的 cmc 值在存在的情況下增加 Hb 以及隨著溫度升高而 cac 保持不變 在所有溫度下保持恒定。 表面張力測量也 表明膠束化過程是自發的、放熱的和 熵驅動。 此外,得出結論,吸附在 界面優于膠束化。 分子建模方法表明 16-E2-16 在 Hb 中的結合 位于α1和β2鏈中。 它還提供了對我們的驗證 通過確認主要結合力的實驗結果 是疏水的和靜電的。 圓二色性表明 16-E2-16 與 Hb 結合導致 α-螺旋含量減少。 MD 模擬結果表明 Hb 和 16-E2-16 結合 Hb 穩定在 6000 ps 左右并確認構象 與 16-E2-16 相互作用后 Hb 發生了變化,如 我們的 CD 結果顯示。


    致謝


    Rajan Patel 博士非常感謝來自 科學與工程研究委員會(SR/S1/PC-19/2011 和 SB/EMEQ-097/2013) 和新德里大學撥款委員會, 印度(F.No. 39-841/2010 (SR))。 Abbul Bashar Khan 博士表示感謝 印度新德里科學與工程研究委員會, 提供研究資助 (SB/FT/CS-031/2013)。 作者還 感謝 DST 為 FIST 撥款提供制裁令編號。 (SR/FIST/LS-541/2012)。


    參考


    [1] Q.L. Wang, Z.H. Liu, R.X. Cai, G. Lu, Study on peroxidative characteristics of hemoglobin, Acta Chim. Sin. Chin, Ed. 61 (2003) 34–39.


    [2] A. Su?kowska, B. Bojko, J. Rownicka, D. Pentak, W. Su?kowski, Effect of urea on serum albumin complex with antithyroid drugs: fluorescence study, J. Mol. Struct. 651 (2003) 237–243.


    [3] S. De, A. Girigoswami, S. Das, Fluorescence probing of albumin–surfactant interaction, J. Colloid Interface Sci. 285 (2005) 562–573.


    [4] P. Becher, Encyclopedia of Emulsion Technology, Marcel Dekker, Inc. and Basel, New York, 1998.


    [5] M. Vasilescu, D. Angelescu, M. Almgren, A. Valstar, Interactions of globular proteins with surfactants studied with fluorescence probe methods, Langmuir 15 (1999) 2635–2643.


    [6] B. Kamat, J. Seetharamappa, In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin, J. Pharm. Biomed. Anal. 35 (2004) 655–664.


    [7] H. Bai, X. Liu, Z. Zhang, S. Dong, In situ circular dichroic electrochemical study of bilirubin and bovine serum albumin complex, Spectrochim. Acta A 60 (2004) 155–160.


    [8] A.C. Rinaldi, A. Bonamore, A. Macone, A. Boffi, A. Bozzi, A. Di Giulio, Interaction of Vitreoscilla hemoglobin with membrane lipids, Biochemistry 45 (2006) 4069–4076.


    [9] M.S. Oliveira, L.M. Moreira, M. Tabak, Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with ionic surfactants: a MALDI-TOF-MS study, Int. J. Biol. Macromol. 42 (2008) 111–119.


    [10] Q. Lu, C. Hu, R. Cui, S. Hu, Direct electron transfer of hemoglobin founded on electron tunneling of CTAB monolayer, J. Phys. Chem. B 111 (2007) 9808–9813.


    [11] W. Kaca, R.I. Roth, K.D. Vandegriff, G.C. Chen, F.A. Kuypers, R.M. Winslow, J. Levin, Effects of bacterial endotoxin on human cross-linked and native hemoglobins, Biochemistry 34 (1995) 11176–11185.


    [12] W. Kaca, R.I. Roth, J. Levin, Hemoglobin a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity, J. Biol. Chem. 269 (1994) 25078–25084.


    [13] J.W. Rupon, S.R. Domingo, S.V. Smith, B.K. Gummadi, H. Shields, S.K. Ballas, S.B. King, D.B. Kim-Shapiro, The reactions of myoglobin normal adult hemoglobin, sickle cell hemoglobin and hemin with hydroxyurea, Biophys. Chem. 84 (2000) 1–11.


    [14] A. Ray, B.A. Friedman, J.M. Friedman, Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin, J. Am. Chem. Soc. 124 (2002) 7270–7271.


    [15] A. Chakraborty, D. Seth, P. Setua, N. Sarkar, Photoinduced electron transfer in a protein-surfactant complex: probing the interaction of SDS with BSA, J. Phys. Chem. B 110 (2006) 16607–16617.


    [16] B. Orioni, M. Roversi, C. La Mesa, F. Asaro, G. Pellizer, G. D'Errico, Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system, J. Phys. Chem. B 110 (2006) 12129–12140.


    [17] A. Stenstam, G. Montalvo, I. Grillo, M. Gradzielski, Small angle neutron scattering study of lysozyme-sodium dodecyl sulfate aggregates, J. Phys. Chem. B 107 (2003) 12331–12338.


    [18] D.J. McClements, Food Emulsions: Principles, Practices, and Techniques, CRC Press, New york, 1999.


    [19] M. Jones, Surfactant interactions with biomembranes and proteins, Chem. Soc. Rev. 21 (1992) 127–136.


    [20] J.A. Reynolds, C. Tanford, The gross conformation of protein-sodium dodecyl sulfate complexes, J. Biol. Chem. 245 (1970) 5161–5165.


    [21] T.K. Das, S. Mazumdar, S. Mitra, Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding, Eur. J. Biochem. 254 (1998) 662–670.


    [22] E. Gelamo, C. Silva, H. Imasato, M. Tabak, Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling, Biochim. Biophys. Acta 1594 (2002) 84–99.


    [23] M.N. Jones, Biological Interfaces: An Introduction to the Surface and Colloid Science of Biochemical and Biological Systems, Elsevier, 1975.


    [24] C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, 1980.


    [25] S.H. Chen, J. Teixeira, Structure and fractal dimension of protein-detergent complexes, Phys. Rev. Lett. 57 (1986) 2583–2586.


    [26] X. Guo, N. Zhao, S. Chen, J. Teixeira, Small-angle neutron scattering study of the structure of protein/detergent complexes, Biopolymers 29 (1990) 335–346.


    [27] B. Ojha, G. Das, The interaction of 5-(alkoxy)naphthalen-1-amine with bovine serum albumin and its effect on the conformation of protein, J. Phys. Chem. B 114 (2010) 3979–3986.


    [28] R.E. Babine, S.L. Bender, Molecular recognition of protein-ligand complexes: applications to drug design, Chem. Rev. 97 (1997) 1359–1472.


    [29] D. Otzen, Protein–surfactant interactions: a tale of many states, Biochim. Biophys. Acta (BBA) Proteins Proteom. 1814 (2011) 562–591.


    [30] F.M. Menger, C. Littau, Gemini-surfactants: synthesis and properties, J. Am. Chem. Soc. 113 (1991) 1451–1452.


    [31] M.J. Rosen, Geminis A new generation of surfactant, ChemTech 23 (1993) 30.


    [32] F. Menger, C. Littau, Gemini surfactants: a new class of self-assembling molecules, J. Am. Chem. Soc. 115 (1993) 10083–10090.


    [33] J.X.R. Zana, Gemini Surfactants, in: R. Zana, J. Xia (Eds.), Marcel Dekker, New York, 2004.


    [34] M. Akram, I.A. Bhat, S. Anwar, Molecular interaction of an ester-functionalized biodegradable gemini surfactant with lysozyme: insights from spectroscopy, calorimetry and molecular docking, J. Mol. Liq. 212 (2015) 641–649.


    [35] M. Akram, I.A. Bhat, New insights into binding interaction of novel ester-functionalized m-E2-m gemini surfactants with lysozyme: a detailed multidimensional study, RSC Adv. 5 (2015) 102780–102794.


    [36] J.K. Maurya, M.U.H. Mir, U.K. Singh, N. Maurya, N. Dohare, S. Patel, A. Ali, R. Patel, Molecular investigation of the interaction between ionic liquid type gemini surfactant and lysozyme: a spectroscopic and computational approach, Biopolymers 103 (2015) 406–415.


    [37] J.K. Maurya, M.U.H. Mir, N. Maurya, N. Dohare, A. Ali, R. Patel, A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin, J. Biomol. Struct. Dyn. (2016) 1–16.


    [38] M.U.H. Mir, J.K. Maurya, S. Ali, S. Ubaid-ullah, A.B. Khan, R. Patel, Molecular interaction of cationic gemini surfactant with bovine serum albumin: a spectroscopic and molecular docking study, Process Biochem. 49 (2014) 623–630.


    [39] A.R. Tehrani-Bagha, H. Oskarsson, C.G. van Ginkel, K. Holmberg, Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation, J. Colloid Interface Sci. 312 (2007) 444–452.


    [40] Z. Gao, S. Tai, Q. Zhang, Y. Zhao, B. Lü, Y. Ge, L. Huang, X. Tang, Synthesis and surface activity of biquaternary ammonium salt gemini surfactants with ester bond, Wuhan Univ. J. Nat. Sci. 13 (2008) 227–231.


    [41] J.D. Van Hamme, A. Singh, O.P. Ward, Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology, Biotechnol. Adv. 24 (2006) 604–620.


    [42] K. Kralova, F. Sersen, F. Devinsky, I. Lacko, Photosynthesis-inhibiting effects of cationic biodegradable gemini surfactants, Tenside Surfactants Deterg. 47 (2010) 288–293.


    [43] S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function, Curr. Protein Pept. Sci. 1 (2000) 349–384.


    [44] J.D. Morrisett, J.S.K. David, H.J. Pownall, A.M. Gotto, Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine, Biochemistry 12 (1973) 1290–1299.


    [45] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461.


    [46] W.L. DeLano, S. Bromberg, PyMOL User's Guide, DeLano Scientific LLC, 2004.


    [47] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. 26 (2005) 1701–1718.


    [48] E. Lindahl, B. Hess, D. Van Der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Model. 7 (2001) 306–317.


    [49] W.R. Scott, P.H. Hünenberger, I.G. Tironi, A.E. Mark, S.R. Billeter, J. Fennen, A.E. Torda, T. Huber, P. Krüger, W.F. van Gunsteren, The GROMOS biomolecular simulation program package, J. Phys. Chem. A 103 (1999) 3596–3607.


    [50] L.D. Schuler, X. Daura, W.F. Van Gunsteren, An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase, J. Comput. Chem. 22 (2001) 1205–1218.


    [51] A.W. Schuèttelkopf, D.M. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein–ligand complexes, Acta Crystallogr. Sect. D: Biol. Crystallogr. 60 (2004) 1355–1363.


    [52] H.J. Berendsen, J.P. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration, in: Intermolecular Forces, Springer, 1981, pp. 331–342.


    [53] B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (1997) 1463–1472.


    [54] V. Singh, R. Tyagi, Unique micellization and cmc aspects of gemini surfactant: an overview, J. Dispers. Sci. Technol. 35 (2014) 1774–1792.


    [55] V. Pradines, J. Kr?gel, V.B. Fainerman, R. Miller, Interfacial properties of mixed  -lactoglobulin-SDS layers at the water/air and water/oil interface, J. Phys. Chem. B 113 (2009) 745–751.


    [56] M.J. R., Characteristic features of surfactants, In Surfactants and Interfacial Phenomena, (1989), pp. 1–32.


    [57] M. Rosen, The relationship of structure to properties in surfactants. IV. Effectiveness in surface or interfacial tension reduction, J. Colloid Interface Sci. 56 (1976) 320.


    [58] J.N. Phillips, The energetics of micelle formation, Trans. Faraday Soc. 51 (1955) 561–569.


    [59] M. Noronha, R. Santos, E. Paci, H. Santos, A.L. Mac? anita, Fluorescence lifetimes of tyrosine residues in cytochrome c as local probes to study protein unfolding, J. Phys. Chem. B 113 (2009) 4466–4474.


    [60] H.G. Kristinsson, Acid-induced unfolding of flounder hemoglobin: evidence for a molten globular state with enhanced pro-oxidative activity, J. Agric. Food. Chem. 50 (2002) 7669–7676.


    [61] M. Matsui, A. Nakahara, A. Takatsu, K. Kato, N. Matsuda, In situ observation of the state and stability of hemoglobin adsorbed onto glass surface by slab optical waveguide (SOWG) spectroscopy, Int. J. Chem. Biomol. Eng. 1 (2008) 72–75.


    [62] A.-E.F. Nassar, J.F. Rusling, N. Nakashima, Electron transfer between electrodes and heme proteins in protein-DNA films, J. Am. Chem. Soc. 118 (1996) 3043–3044.


    [63] B.L. Boys, M.C. Kuprowski, L. Konermann, Symmetric behavior of hemoglobin  -and  -subunits during acid-induced denaturation observed by electrospray mass spectrometry, Biochemistry 46 (2007) 10675–10684.


    [64] W. Liu, X. Guo, R. Guo, The interaction between hemoglobin and two surfactants with different charges, Int. J. Biol. Macromol. 41 (2007) 548–557.


    [65] Y. Wang, R. Guo, J. Xi, Comparative studies of interactions of hemoglobin with single-chain and with gemini surfactants, J. Colloid Interface Sci. 331 (2009) 470–475.


    [66] P.S. Santiago, L.M. Moreira, E.V. de Almeida, M. Tabak, Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: dissociation of oligomeric structure and autoxidation, Biochim. Biophys. Acta (BBA)-Gen.Subj. 1770 (2007) 506–517.


    [67] X. Yang, J. Chou, G. Sun, H. Yang, T. Lu, Synchronous fluorescence spectra of hemoglobin: a study of aggregation states in aqueous solutions, Microchem. J. 60 (1998) 210–216.


    [68] P. Daneshgar, A.A. Moosavi-Movahedi, P. Norouzi, M.R. Ganjali, A. Madadkar-Sobhani, A.A. Saboury, Molecular interaction of human serum albumin with paracetamol: spectroscopic and molecular modeling studies, Int. J. Biol. Macromol. 45 (2009) 129–134.


    [69] S. Chakraborty, S. Chaudhuri, B. Pahari, J. Taylor, P.K. Sengupta, B. Sengupta, A critical study on the interactions of hesperitin with human hemoglobin: fluorescence spectroscopic and molecular modeling approach, J. Lumin. 132 (2012) 1522–1528.


    [70] F.F. Tian, F.L. Jiang, X.L. Han, C. Xiang, Y.-S. Ge, J.H. Li, Y. Zhang, R. Li, X.L. Ding, Y. Liu, Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic electrochemical, and molecular docking methods, J. Phys. Chem. B 114 (2010) 14842–14853.


    [71] S. Jana, S. Dalapati, S. Ghosh, N. Guchhait, Study of microheterogeneous environment of protein human Serum albumin by an extrinsic fluorescent reporter: a spectroscopic study in combination with molecular docking and molecular dynamics simulation, J. Photochem. Photobiol. B 112 (2012) 48–58.


    [72] R. Schneider, A. Mayer, W. Schmatz, B. Kaiser, R. Scherm, Neutron small-angle scattering from aqueous solutions of oxy-and deoxyhaemoglobin, J. Mol. Biol. 41 (1969) 231–235.


    [73] H. Conrad, A. Mayer, H. Thomas, H. Vogel, X-ray small-angle scattering from aqueous solutions of oxy-and deoxyhaemoglobin, J. Mol. Biol. 41 (1969) 225–229.


    [74] J. Schelten, P. Schlecht, W. Schmatz, A. Mayer, Neutron small angle scattering of hemoglobin, J. Biol. Chem. 247 (1972) 5436–5441.


    [75] J. Li, R. Shi, C. Yang, X. Zhu, Exploration of the binding of benzimidazole-biphenyl derivatives to hemoglobin using docking and molecular dynamics simulation, Int. J. Biol. Macromol. 48 (2011) 20–26.



    酯功能化的雙子表面活性劑與血紅蛋白的結合——摘要、簡介

    酯功能化的雙子表面活性劑與血紅蛋白的結合——材料和方法

    酯功能化的雙子表面活性劑與血紅蛋白的結合——結果和討論

    酯功能化的雙子表面活性劑與血紅蛋白的結合——結論、致謝!

    日韩精品在线观看